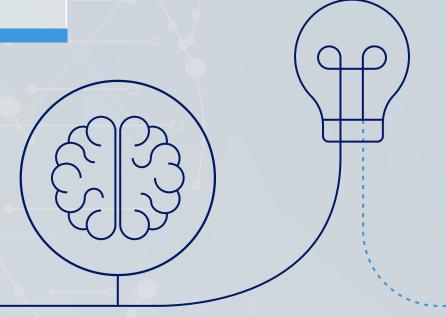


Time to put your knowledge to the test!


Welcome to the **Module 2** quiz on **biology of amylin secretion**. This is your chance to apply what you have learned and see how well you understand the material

The quiz consists of **5 questions** in total

Please start by pressing the button on the right. Good luck!

START >

Question 1

Which statement about amylin is true?

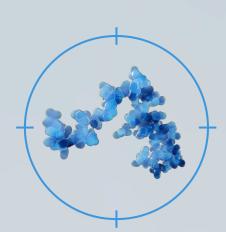
- **A.** Amylin is secreted only from the pancreatic β cells
- **B.** Amylin is mainly secreted from the pancreatic β cells, but can also be produced in other organs such as the stomach and the brain
- **C.** Amylin is mainly secreted from the pancreatic β cells, but can also be produced in other organs such as the brain, kidneys and thyroid gland
- **D.** Amylin is mainly secreted from the pancreatic β cells and the prefrontal cortex

Povo nordisk®

Question 1

Which statement about amylin is true?

A. Amylin is secreted only from the pancreatic β cells


- **B.** Amylin is mainly secreted from the pancreatic β cells, but can also be produced in other organs such as the stomach and the brain
- **C.** Amylin is mainly secreted from the pancreatic β cells, but can also be produced in other organs such as the brain, kidneys and thyroid gland
- **D.** Amylin is mainly secreted from the pancreatic β cells and the prefrontal cortex

Your answer is incorrect

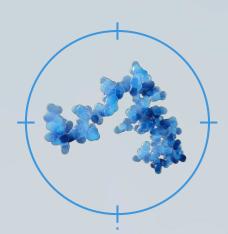
Amylin is mainly secreted from the pancreatic β cells, but may also be produced by endocrine cells of the stomach and sensory neurons in the dorsal root ganglia

Lutz TA. *Appetite* 2022;172:105965; Mulder H et al. *Gastroenterology* 1994;107:712–9; Mulder H et al. *J Neurosci* 1995;15:7625–32; Rees TA et al. *J Headache Pain* 2024;25:36.

< RETRY

Question 1

Which statement about amylin is true?


- **A.** Amylin is secreted only from the pancreatic β cells
- B. Amylin is mainly secreted from the pancreatic β cells, but can also be produced in other organs such as the stomach and the brain
- **C.** Amylin is mainly secreted from the pancreatic β cells, but can also be produced in other organs such as the brain, kidneys and thyroid gland
- **D.** Amylin is mainly secreted from the pancreatic β cells and the prefrontal cortex

Your answer is correct!

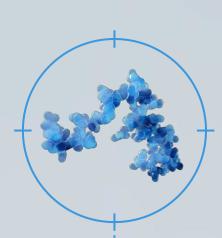
Amylin is mainly secreted from the pancreatic β cells, with evidence that it can be produced by endocrine cells of the stomach and sensory neurons in the dorsal root ganglia

Lutz TA. *Appetite* 2022;172:105965; Mulder H et al. *Gastroenterology* 1994;107:712–9; Mulder H et al. *J Neurosci* 1995;15:7625–32; Rees TA et al. *J Headache Pain* 2024;25:36.

NEXT

Question 1

Which statement about amylin is true?


- **A.** Amylin is secreted only from the pancreatic β cells
- **B.** Amylin is mainly secreted from the pancreatic β cells, but can also be produced in other organs such as the stomach and the brain
- C. Amylin is mainly secreted from the pancreatic β cells, but can also be produced in other organs such as the brain, kidneys and thyroid gland
- f D. Amylin is mainly secreted from the pancreatic f eta cells and the prefrontal cortex

Your answer is incorrect

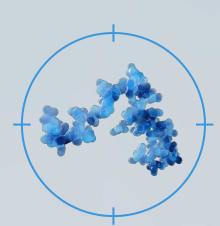
Amylin is mainly secreted from the pancreatic β cells, but may also be produced by endocrine cells of the stomach and sensory neurons in the dorsal root ganglia

Lutz TA. *Appetite* 2022;172:105965; Mulder H et al. *Gastroenterology* 1994;107:712–9; Mulder H et al. *J Neurosci* 1995;15:7625–32; Rees TA et al. *J Headache Pain* 2024;25:36.

< RETRY

Question 1

Which statement about amylin is true?


- **A.** Amylin is secreted only from the pancreatic β cells
- **B.** Amylin is mainly secreted from the pancreatic β cells, but can also be produced in other organs such as the stomach and the brain
- **C.** Amylin is mainly secreted from the pancreatic β cells, but can also be produced in other organs such as the brain, kidneys and thyroid gland
- D. Amylin is mainly secreted from the pancreatic $\boldsymbol{\beta}$ cells and the prefrontal cortex

Your answer is incorrect

Amylin is mainly secreted from the pancreatic β cells, but may also be produced by endocrine cells of the stomach and sensory neurons in the dorsal root ganglia

Lutz TA. *Appetite* 2022;172:105965; Mulder H et al. *Gastroenterology* 1994;107:712–9; Mulder H et al. *J Neurosci* 1995;15:7625–32; Rees TA et al. *J Headache Pain* 2024;25:36.

< RETRY

Question 2

Which of the following cannot directly stimulate amylin and insulin secretion?

A. Fatty acids

B. Glucose

C. Amino acids

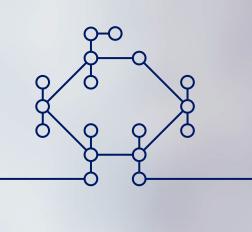
novo nordisk

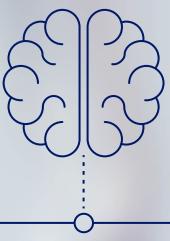
Question 2

Which of the following cannot directly stimulate amylin and insulin secretion?

A. Fatty acids

B. Glucose


C. Amino acids


Your answer is correct!

Fatty acids cannot stimulate amylin and insulin secretion in the absence of glucose

White PJ et al. Nat Rev Endocrinol 2025;21:397–412.

NEXT >

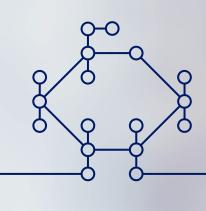
novo nordisk

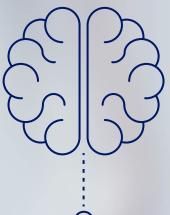
Question 2

Which of the following cannot directly stimulate amylin and insulin secretion?

A. Fatty acids

B. Glucose


C. Amino acids


Your answer is incorrect

Glucose is the primary stimulus for amylin and insulin secretion

White PJ et al. *Nat Rev Endocrinol* 2025;21:397–412; Rohli KE et al. *Biomolecules* 2022;12:335; Cluck MW et al. *Pancreas* 2005;30:1–14; Alam T et al. *Diabetes* 1992;41:508–14; Moore CX, Cooper GJ. *Biochem Biophys Res Commun* 1991;179:1–9.

< RETRY

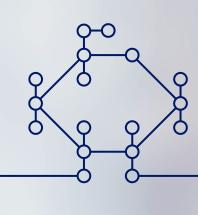
novo nordisk

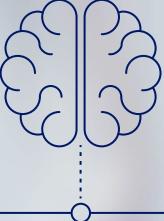
Question 2

Which of the following cannot directly stimulate amylin and insulin secretion?

A. Fatty acids

B. Glucose


C. Amino acids


Your answer is incorrect

Amino acids such as glutamine, leucine, arginine, and glycine may directly induce secretion from β cells, regardless of glucose availability

White PJ et al. *Nat Rev Endocrinol* 2025;21:397–412; Rohli KE et al. *Biomolecules* 2022;12:335; Cluck MW et al. *Pancreas* 2005;30:1–14; Alam T et al. *Diabetes* 1992;41:508–14; Moore CX, Cooper GJ. *Biochem Biophys Res Commun* 1991;179:1–9.

< RETRY

Sove perdisk

Question 3

Which hormones may stimulate the secretion of amylin and insulin from β cells?

A. Only glucagon-like peptide-1 (GLP-1) hormone

- **B.** Nutrient-stimulated secretion of amylin and insulin cannot be modulated by other hormones
- **C.** Cholecystokinin (CCK), glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and pituitary adenylate cyclase-activating polypeptide (PACAP), among other hormones

1)-

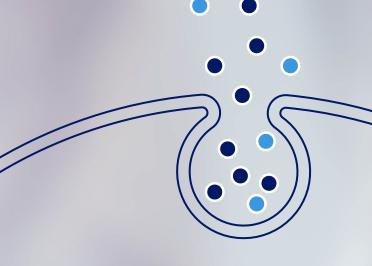
Question 3

Which hormones may stimulate the secretion of amylin and insulin from β cells?

A. Only glucagon-like peptide-1 (GLP-1) hormone

- **B.** Nutrient-stimulated secretion of amylin and insulin cannot be modulated by other hormones
- **C.** Cholecystokinin (CCK), glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and pituitary adenylate cyclase-activating polypeptide (PACAP), among other hormones

Your answer is incorrect


Amylin and insulin secretion are affected by a variety of hormones including glucagon-like peptide-1 (GLP-1), as well as others including cholecystokinin (CCK), glucose-dependent insulinotropic polypeptide (GIP), and pituitary adenylate cyclase-activating polypeptide (PACAP)

Cluck MW et al. *Pancreas* 2005;30:1–14; Moore CX, Cooper GJ. *Biochem Biophys Res Commun* 1991;179:1–9; White PJ et al. *Nat Rev Endocrinol* 2025;21:397–412.

< RETRY

SKIP

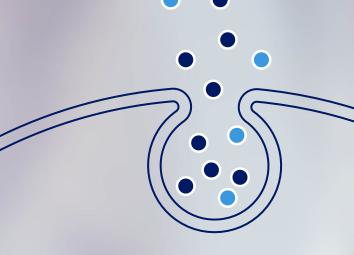
Question 3

Which hormones may stimulate the secretion of amylin and insulin from β cells?

A. Only glucagon-like peptide-1 (GLP-1) hormone

B. Nutrient-stimulated secretion of amylin and insulin cannot be modulated by other hormones

C. Cholecystokinin (CCK), glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and pituitary adenylate cyclase-activating polypeptide (PACAP), among other hormones


Nutrient-stimulated amylin and insulin secretion is also affected by other hormones, including cholecystokinin (CCK), glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and pituitary adenylate cyclase-activating polypeptide (PACAP), as well as other factors

Cluck MW et al. *Pancreas* 2005;30:1–14; Moore CX, Cooper GJ. *Biochem Biophys Res Commun* 1991;179:1–9; White PJ et al. *Nat Rev Endocrinol* 2025;21:397–412.

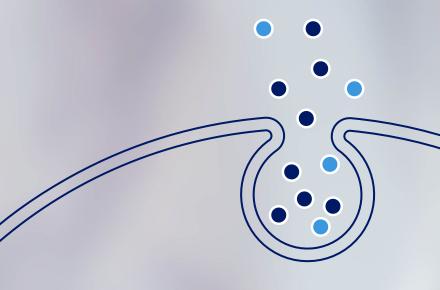
< RETRY

SKIP

Question 3

Which hormones may stimulate the secretion of amylin and insulin from β cells?

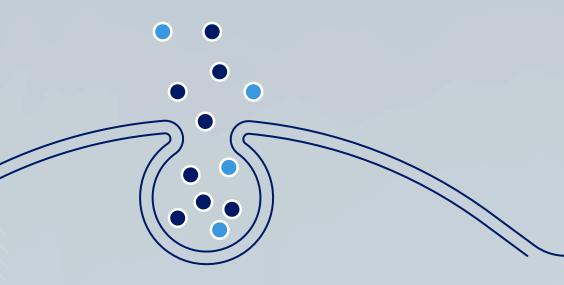
- **A.** Only glucagon-like peptide-1 (GLP-1) hormone
- **B.** Nutrient-stimulated secretion of amylin and insulin cannot be modulated by other hormones
- C. Cholecystokinin (CCK), glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and pituitary adenylate cyclase-activating polypeptide (PACAP), among other hormones


Your answer is correct!

Cholecystokinin (CCK), glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and pituitary adenylate cyclase-activating polypeptide (PACAP) stimulate amylin and insulin secretion

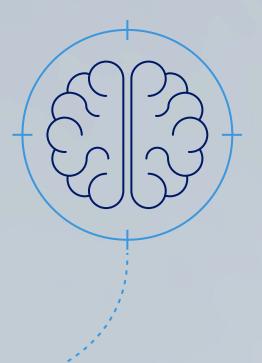
Cluck MW et al. *Pancreas* 2005;30:1–14; Moore CX, Cooper GJ. *Biochem Biophys Res Commun* 1991;179:1–9; White PJ et al. *Nat Rev Endocrinol* 2025;21:397–412.

NEXT >


Question 4

What effect does somatostatin have on amylin and insulin secretion?

A. Little to no effect


B. Inhibits secretion

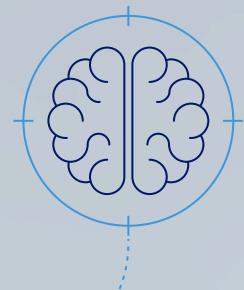
C. Stimulates secretion

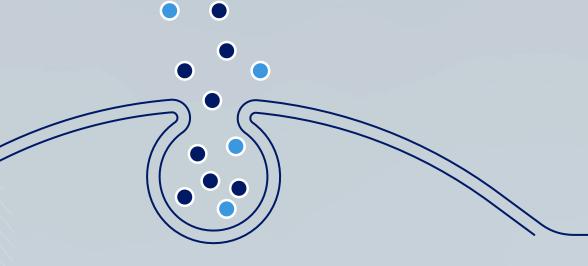
Question 4

What effect does somatostatin have on amylin and insulin secretion?

A. Little to no effect

B. Inhibits secretion


C. Stimulates secretion



Somatostatin does have an effect on amylin and insulin secretion: it inhibits secretion of amylin and insulin

Cluck MW et al. *Pancreas* 2005;30:1–14; Moore CX, Cooper GJ. *Biochem Biophys Res Commun* 1991;179:1–9; White PJ et al. *Nat Rev Endocrinol* 2025;21:397–412.

< RETRY

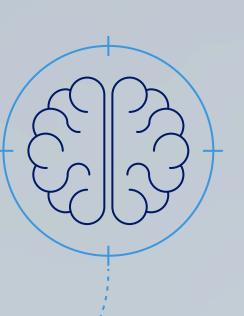
Question 4

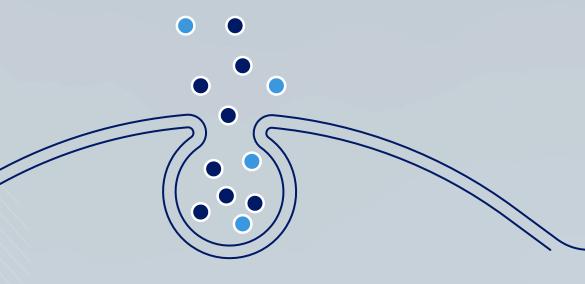
What effect does somatostatin have on amylin and insulin secretion?

A. Little to no effect

B. Inhibits secretion

C. Stimulates secretion




Somatostatin inhibits amylin and insulin secretion

Cluck MW et al. *Pancreas* 2005;30:1–14; Moore CX, Cooper GJ. *Biochem Biophys Res Commun* 1991;179:1–9; White PJ et al. *Nat Rev Endocrinol* 2025;21:397–412.

NEXT >

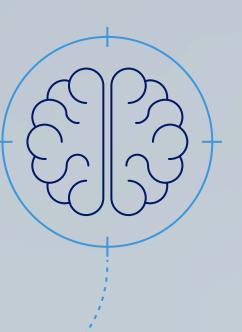
Question 4

What effect does somatostatin have on amylin and insulin secretion?

A. Little to no effect

B. Inhibits secretion

C. Stimulates secretion



Somatostatin does NOT stimulate secretion of amylin and insulin, but instead inhibits amylin and insulin secretion

Cluck MW et al. *Pancreas* 2005;30:1–14; Moore CX, Cooper GJ. *Biochem Biophys Res Commun* 1991;179:1–9; White PJ et al. *Nat Rev Endocrinol* 2025;21:397–412.

< RETRY

True or false: The effects of incretins and other hormones are mediated via G-protein-coupled receptor-mediated signaling affecting the "amplifying" pathways

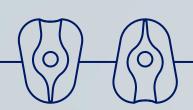
A. True

B. False

Question 5

True or false: The effects of incretins and other hormones are mediated via G-protein-coupled receptor-mediated signaling affecting the "amplifying" pathways

A. True


B. False

Your answer is correct!

The effects of incretins and other hormones are mediated via G-protein-coupled receptor-mediated signaling affecting the "amplifying" pathways

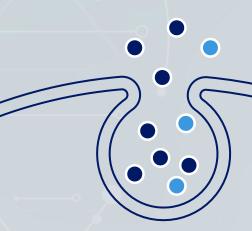
Cluck MW et al. *Pancreas* 2005;30:1–14; Alam T et al. *Diabetes* 1992;41:508–14; White PJ et al. *Nat Rev Endocrinol* 2025;21:397–412.

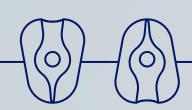
NEXT

Question 5

True or false: The effects of incretins and other hormones are mediated via G-protein-coupled receptor-mediated signaling affecting the "amplifying" pathways

A. True


B. False


Your answer is incorrect

The effects of incretins and other hormones are mediated via G-protein-coupled receptor-mediated signaling affecting the "amplifying" pathways

Cluck MW et al. *Pancreas* 2005;30:1–14; Alam T et al. *Diabetes* 1992;41:508–14; White PJ et al. *Nat Rev Endocrinol* 2025;21:397–412.

< RETRY

You have completed the quiz!

Module 2: Biology of amylin secretion

