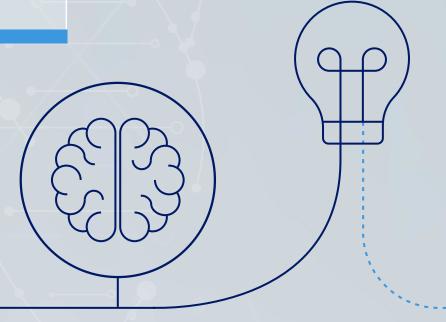


Time to put your knowledge to the test!


Welcome to the **Module 5** quiz on the effects of amylin on **glucose metabolism**. This is your chance to apply what you have learned and see how well you understand the material

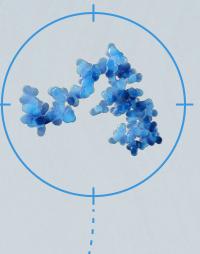
The quiz consists of 8 questions in total

Please start by pressing the button on the right. Good luck!

START >

Prove pordisk

Question 1


Which of the following is a key function of amylin in regulating blood glucose levels?

A. Increasing glucagon secretion

B. Slowing gastric emptying

C. Increasing food intake

D. All of the above

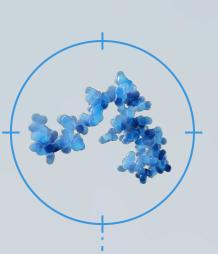
Question 1

Which of the following is a key function of amylin in regulating blood glucose levels?

A. Increasing glucagon secretion

B. Slowing gastric emptying

C. Increasing food intake


D. All of the above

Your answer is incorrect

Amylin decreases glucagon secretion, which reduces glucose production by the liver

Hay DL et al. *Pharmacol Rev* 2015;67:564–600; Lutz TA. *Appetite* 2022;172:105965; Martin C. *Diabetes Educ* 2006;32:1015–104S.

< RETRY

novo nordisk[®]

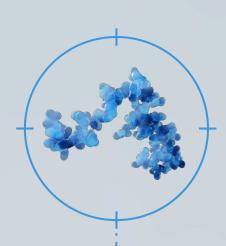
Question 1

Which of the following is a key function of amylin in regulating blood glucose levels?

A. Increasing glucagon secretion

B. Slowing gastric emptying

C. Increasing food intake


D. All of the above

Your answer is correct!

Amylin helps regulate postprandial blood glucose levels by slowing down gastric emptying, leading to a reduced amount of digested food from which glucose can be absorbed into the bloodstream

Hay DL et al. *Pharmacol Rev* 2015;67:564–600; Lutz TA. *Appetite* 2022;172:105965; Martin C. *Diabetes Educ* 2006;32:1015–104S.

NEXT >

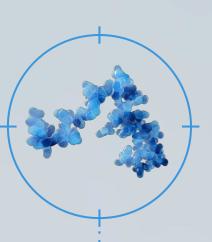
Question 1

Which of the following is a key function of amylin in regulating blood glucose levels?

A. Increasing glucagon secretion

B. Slowing gastric emptying

C. Increasing food intake


D. All of the above

Your answer is incorrect

Amylin decreases food intake by inducing feelings of fullness

Hay DL et al. *Pharmacol Rev* 2015;67:564–600; Lutz TA. *Appetite* 2022;172:105965; Martin C. *Diabetes Educ* 2006;32:1015–104S.

< RETRY

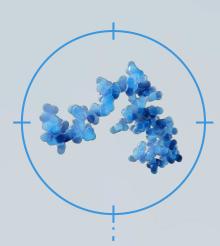
Question 1

Which of the following is a key function of amylin in regulating blood glucose levels?

A. Increasing glucagon secretion

B. Slowing gastric emptying

C. Increasing food intake


D. All of the above

Your answer is incorrect

Amylin decreases glucagon secretion, which reduces glucose production by the liver, and decreases food intake by inducing feelings of fullness

Hay DL et al. *Pharmacol Rev* 2015;67:564–600; Lutz TA. *Appetite* 2022;172:105965; Martin C. *Diabetes Educ* 2006;32:1015–104S.

< RETRY

Question 2

Amylin is co-secreted with which hormone from pancreatic β cells?

A. Glucagon

B. Glucose

C. Insulin

D. None of the above

Question 2

Amylin is co-secreted with which hormone from pancreatic β cells?

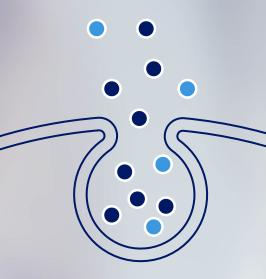
A. Glucagon

B. Glucose

C. Insulin

D. None of the above

Your answer is incorrect


Glucagon is secreted from pancreatic α cells

Lutz TA. *Appetite* 2022;172:105965; Bower RL, Hay DL. *Br J Pharmacol* 2016;173:1883–98; Hay DL et al. *Pharmacol Rev* 2015;67:564–600.

< RETRY

Question 2

Amylin is co-secreted with which hormone from pancreatic β cells?

A. Glucagon

B. Glucose

C. Insulin

D. None of the above

Your answer is incorrect

Amylin functions to lower postprandial glucose levels in the blood

Lutz TA. *Appetite* 2022;172:105965; Bower RL, Hay DL. *Br J Pharmacol* 2016;173:1883–98; Hay DL et al. *Pharmacol Rev* 2015;67:564–600.

< RETRY

Question 2

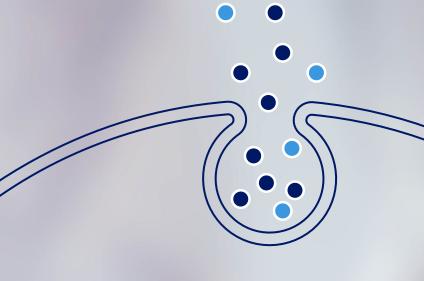
Amylin is co-secreted with which hormone from pancreatic β cells?

A. Glucagon

B. Glucose

C. Insulin

D. None of the above


Your answer is correct!

Amylin is co-secreted with insulin from pancreatic β cells in response to food intake

Lutz TA. *Appetite* 2022;172:105965; Bower RL, Hay DL. *Br J Pharmacol* 2016;173:1883–98; Hay DL et al. *Pharmacol Rev* 2015;67:564–600.

NEXT >

Question 2

Amylin is co-secreted with which hormone from pancreatic β cells?

A. Glucagon

B. Glucose

C. Insulin

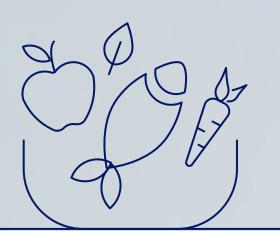
D. None of the above

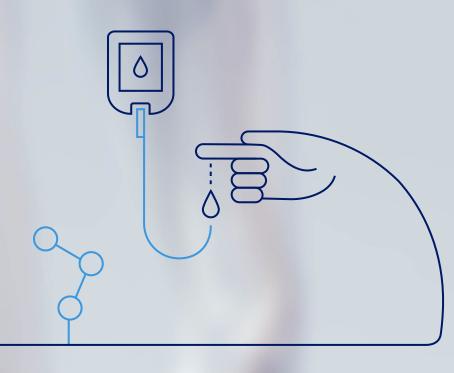
Your answer is incorrect

Glucagon is secreted from pancreatic α cells and amylin functions to lower postprandial glucose levels in the blood

Lutz TA. *Appetite* 2022;172:105965; Bower RL, Hay DL. *Br J Pharmacol* 2016;173:1883–98; Hay DL et al. *Pharmacol Rev* 2015;67:564–600.

< RETRY





Question 3

Which of the following statements is false?

- **A.** Amylin complements the effects of insulin to lower postprandial blood glucose levels
- **B.** After a meal, insulin levels rise, promoting tissue uptake of glucose and inhibiting glucose production
- **C.** Low blood glucose levels trigger amylin secretion, which stimulates glucose production

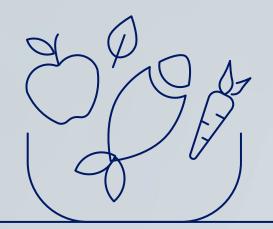
Question 3

Which of the following statements is false?

A. Amylin complements the effects of insulin to lower postprandial blood glucose levels

B. After a meal, insulin levels rise, promoting tissue uptake of glucose and inhibiting glucose production

C. Low blood glucose levels trigger amylin secretion, which stimulates glucose production


This statement is true; amylin does complement the effects of insulin to lower postprandial blood glucose levels

Weyer C et al. Curr Pharm Des 2001;7:1353-73.

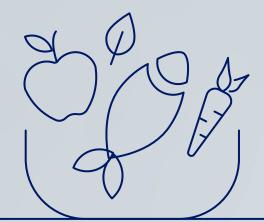
< RETRY

SKIP

Question 3

Which of the following statements is false?

- **A.** Amylin complements the effects of insulin to lower postprandial blood glucose levels
- B. After a meal, insulin levels rise, promoting tissue uptake of glucose and inhibiting glucose production
- **C.** Low blood glucose levels trigger amylin secretion, which stimulates glucose production


This statement is true; after a meal, insulin levels do rise, promoting tissue uptake of glucose and inhibiting glucose production

Weyer C et al. Curr Pharm Des 2001;7:1353-73.

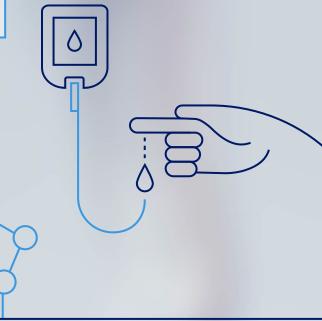
< RETRY

SKIP

Question 3

Which of the following statements is false?


- **A.** Amylin complements the effects of insulin to lower postprandial blood glucose levels
- **B.** After a meal, insulin levels rise, promoting tissue uptake of glucose and inhibiting glucose production
- C. Low blood glucose levels trigger amylin secretion, which stimulates glucose production



Low blood glucose levels trigger glucagon secretion, not amylin secretion, which stimulates glucose production in the liver

Weyer C et al. Curr Pharm Des 2001;7:1353-73.

NEXT >



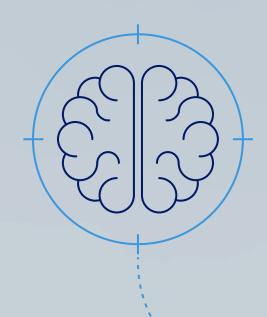
Question 4

True or false: Amylin primarily activates neurons in the area postrema of the brainstem to regulate appetite and gastric emptying.

A. True

B. False

1 2 3 4 5 6 7 8



Question 4

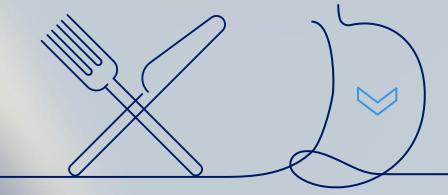
True or false: Amylin primarily activates neurons in the area postrema of the brainstem to regulate appetite and gastric emptying.

A. True

B. False

Your answer is correct!

The statement is true

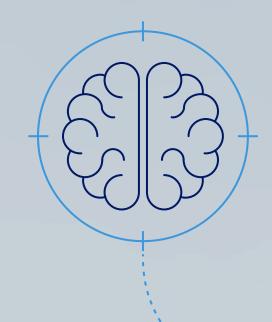

Amylin primarily activates neurons in the

area postrema of the brainstem to regulate

appetite and gastric emptying

Hay DL et al. *Pharmacol Rev* 2015;67:564–600; Lutz TA. *Appetite* 2022;172:105965; Boccia L et al. *Peptides* 2020;132:170366.

NEXT >


1 2 3 4 5 6 7 8

Question 4

True or false: Amylin primarily activates neurons in the area postrema of the brainstem to regulate appetite and gastric emptying.

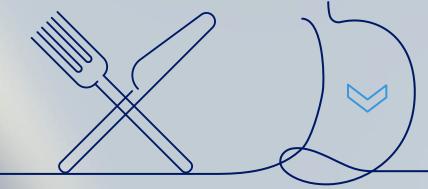
A. True

B. False

Your answer is incorrect

The statement is true

Amylin primarily activates neurons in the


area postrema of the brainstem to regulate

appetite and gastric emptying

Hay DL et al. *Pharmacol Rev* 2015;67:564–600; Lutz TA. *Appetite* 2022;172:105965; Boccia L et al. *Peptides* 2020;132:170366.

< RETRY

1 2 3 4 5 6 7 8

Question 5

What effect does amylin have on glucagon secretion after a meal?

A. It increases glucagon secretion

B. It has no effect on glucagon secretion

C. It suppresses glucagon secretion

D. Amylin and glucagon are co-secreted from pancreatic α cells

Question 5

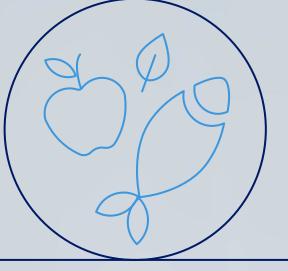
What effect does amylin have on glucagon secretion after a meal?

A. It increases glucagon secretion

B. It has no effect on glucagon secretion

C. It suppresses glucagon secretion

D. Amylin and glucagon are co-secreted from pancreatic α cells


Your answer is incorrect

Amylin does not increase glucagon secretion after a meal

Weyer C et al. *Curr Pharm Des* 2001;7:1353–73; Martin C. *Diabetes Educ* 2006;32:101S–104S; Hay DL et al. *Pharmacol Rev* 2015;67:564–600.

< RETRY

Question 5

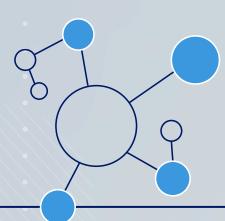
What effect does amylin have on glucagon secretion after a meal?

A. It increases glucagon secretion

B. It has no effect on glucagon secretion

C. It suppresses glucagon secretion

D. Amylin and glucagon are co-secreted from pancreatic α cells



Amylin does have an effect on glucagon secretion after a meal

Weyer C et al. Curr Pharm Des 2001;7:1353-73; Martin C. Diabetes Educ 2006;32:101S-104S; Hay DL et al. *Pharmacol Rev* 2015;67:564-600.

< RETRY

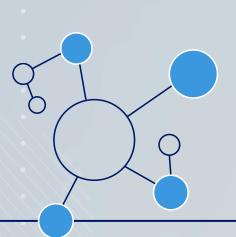
Question 5

What effect does amylin have on glucagon secretion after a meal?

A. It increases glucagon secretion

B. It has no effect on glucagon secretion

C. It suppresses glucagon secretion


D. Amylin and glucagon are co-secreted from pancreatic α cells



Amylin suppresses the postprandial secretion of glucagon from pancreatic α cells

Weyer C et al. *Curr Pharm Des* 2001;7:1353–73; Martin C. *Diabetes Educ* 2006;32:101S–104S; Hay DL et al. *Pharmacol Rev* 2015;67:564–600.

NEXT >

Question 5

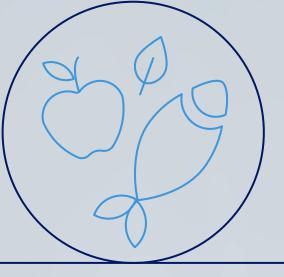
What effect does amylin have on glucagon secretion after a meal?

A. It increases glucagon secretion

B. It has no effect on glucagon secretion

C. It suppresses glucagon secretion

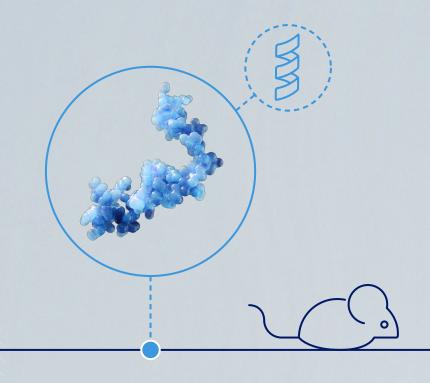
D. Amylin and glucagon are co-secreted from pancreatic α cells


Your answer is incorrect

Amylin is not co-secreted with glucagon from pancreatic α cells

Weyer C et al. *Curr Pharm Des* 2001;7:1353–73; Martin C. *Diabetes Educ* 2006;32:101S–104S; Hay DL et al. *Pharmacol Rev* 2015;67:564–600.

< RETRY

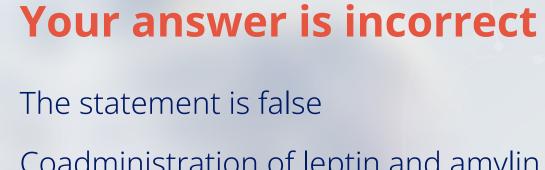


Question 6

True or false: Coadministration of leptin and amylin decreased insulin sensitivity in leptin-resistant diet-induced obese mice, compared with leptin or amylin alone.

A. True

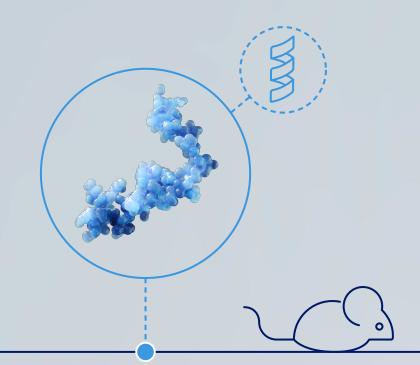
B. False

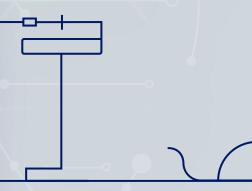


Question 6

True or false: Coadministration of leptin and amylin decreased insulin sensitivity in leptin-resistant diet-induced obese mice, compared with leptin or amylin alone.

A. True


B. False



Coadministration of leptin and amylin increased insulin sensitivity in leptin-resistant diet-induced obese mice, compared with leptin or amylin alone

Kusakabe T et al. Am J Physiol Endocrinol Metab 2012;302:E924–31.

< RETRY

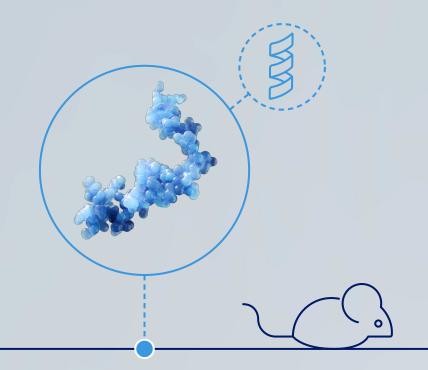
novo nordisk[®]

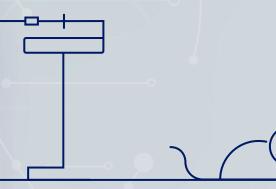
Question 6

True or false: Coadministration of leptin and amylin decreased insulin sensitivity in leptin-resistant diet-induced obese mice, compared with leptin or amylin alone.

A. True

B. False

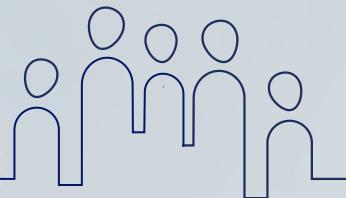



The statement is false

Coadministration of leptin and amylin increased insulin sensitivity in leptin-resistant diet-induced obese mice, compared with leptin or amylin alone

Kusakabe T et al. Am J Physiol Endocrinol Metab 2012;302:E924–31.

NEXT


Question 7

Fill in the blank: In people with _____ diabetes, there is a relative deficiency of amylin and insulin, along with an impaired response of these hormones to meals.


A. Type 1

B. Type 2

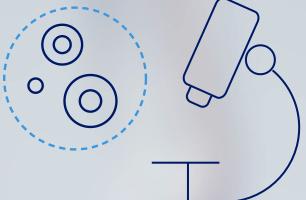
Question 7

Fill in the blank: In people with _____ diabetes, there is a relative deficiency of amylin and insulin, along with an impaired response of these hormones to meals.

In people with type 1 diabetes, there is an absolute deficiency of both amylin and insulin due to the destruction of β cells, in which these hormones are co-localized

Weyer C et al. *Curr Pharm Des* 2001;7:1353–73; Buse JB et al. *Clin Diabetes* 2002;20:137–44.

< RETRY


SKIP

A. Type 1

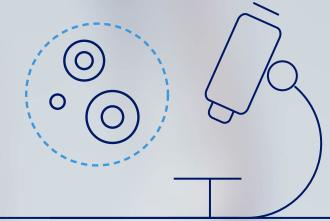
B. Type 2

Question 7

Fill in the blank: In people with _____ diabetes, there is a relative deficiency of amylin and insulin, along with an impaired response of these hormones to meals.

A. Type 1

B. Type 2



In people with type 2 diabetes there is a relative deficiency of both amylin and insulin, and in people with type 1 diabetes there is an absolute deficiency

Weyer C et al. *Curr Pharm Des* 2001;7:1353–73; Buse JB et al. *Clin Diabetes* 2002;20:137–44.

NEXT >

Question 8

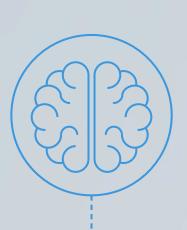
What are the three key actions of amylin in regulating blood glucose levels?

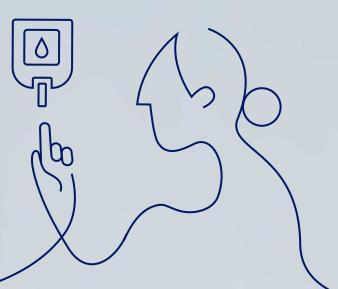
- **A.** Reducing food intake, slowing gastric emptying, and increasing glucose absorption
- **B.** Slowing gastric emptying, reducing food intake, and inhibiting glucagon secretion
- **C.** Increasing glucagon secretion, promoting gastric emptying, and increasing food intake
- **D.** Reducing food intake, promoting gastric emptying, and inhibiting glucagon secretion

Question 8

What are the three key actions of amylin in regulating blood glucose levels?

- A. Reducing food intake, slowing gastric emptying, and increasing glucose absorption
- **B.** Slowing gastric emptying, reducing food intake, and inhibiting glucagon secretion
- **C.** Increasing glucagon secretion, promoting gastric emptying, and increasing food intake
- **D.** Reducing food intake, promoting gastric emptying, and inhibiting glucagon secretion




Amylin reduces food intake and slows gastric emptying, but does not increase glucose absorprtion

Weyer C et al. *Curr Pharm Des* 2001;7:1353–73; Martin C. *Diabetes Educ* 2006;32:101S–104S; Hay DL et al. *Pharmacol Rev* 2015;67:564–600.

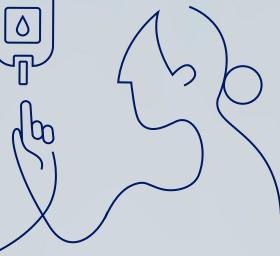
< RETRY

SKIP

Question 8

What are the three key actions of amylin in regulating blood glucose levels?

- A. Reducing food intake, slowing gastric emptying, and increasing glucose absorption
- B. Slowing gastric emptying, reducing food intake, and inhibiting glucagon secretion
- C. Increasing glucagon secretion, promoting gastric emptying, and increasing food intake
- **D.** Reducing food intake, promoting gastric emptying, and inhibiting glucagon secretion



The three key actions of amylin are slowing gastric emptying, reducing food intake, and inhibiting glucagon secretion

Weyer C et al. Curr Pharm Des 2001;7:1353-73; Martin C. Diabetes Educ 2006;32:101S-104S; Hay DL et al. *Pharmacol Rev* 2015;67:564-600.

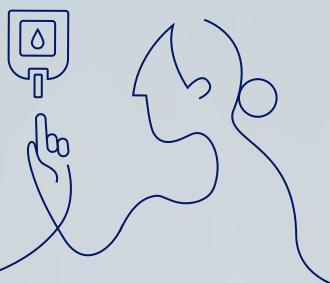
NEXT

Povo nordisk®

Question 8

What are the three key actions of amylin in regulating blood glucose levels?

- **A.** Reducing food intake, slowing gastric emptying, and increasing glucose absorption
- **B.** Slowing gastric emptying, reducing food intake, and inhibiting glucagon secretion
- C. Increasing glucagon secretion, promoting gastric emptying, and increasing food intake
- **D.** Reducing food intake, promoting gastric emptying, and inhibiting glucagon secretion


Amylin does not increase glucagon secretion, promote gastric empyting, or increase food intake

Weyer C et al. *Curr Pharm Des* 2001;7:1353–73; Martin C. *Diabetes Educ* 2006;32:101S–104S; Hay DL et al. *Pharmacol Rev* 2015;67:564–600.

< RETRY

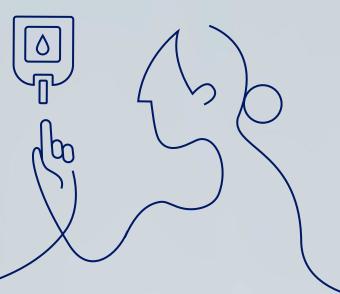
SKIP >

2 3 4 5 6 7 8

Question 8

What are the three key actions of amylin in regulating blood glucose levels?

- **A.** Reducing food intake, slowing gastric emptying, and increasing glucose absorption
- **B.** Slowing gastric emptying, reducing food intake, and inhibiting glucagon secretion
- **C.** Increasing glucagon secretion, promoting gastric emptying, and increasing food intake
- D. Reducing food intake, promoting gastric emptying, and inhibiting glucagon secretion

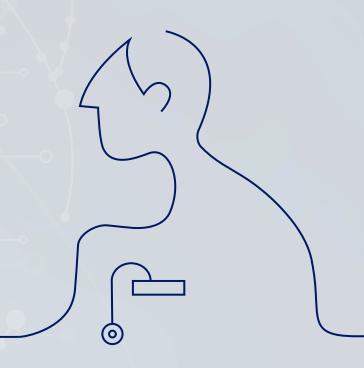

Amylin reduces food intake and inhibits glucagon secretion, but does not promote gastric emptying

Weyer C et al. *Curr Pharm Des* 2001;7:1353–73; Martin C. *Diabetes Educ* 2006;32:1015–104S; Hay DL et al. *Pharmacol Rev* 2015;67:564–600.

< RETRY

SKIP >

1 2 3 4 5 6 7 8



You have completed the quiz!

Module 5: Effects on glucose metabolism

