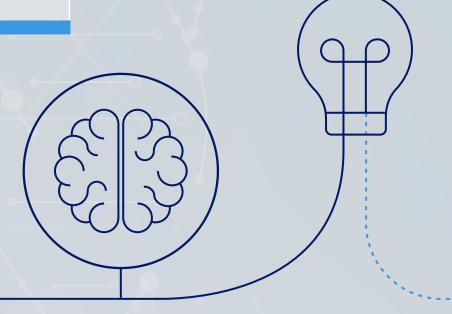



Time to put your knowledge to the test!


Welcome to the **Module 6** quiz on the effects of amylin on **gastric emptying**. This is your chance to apply what you have learned and see how well you understand the material

The quiz consists of **7 questions** in total

Please start by pressing the button on the right. Good luck!

START >

True or false: Gastric emptying is the transit of nutrients from the duodenum into the stomach.

A. True

B. False

Provo pordisk®

Question 1

True or false: Gastric emptying is the transit of nutrients from the duodenum into the stomach.

A. True

B. False

Your answer is incorrect

The statement is false

Gastric emptying is the transit of nutrients from the stomach into the duodenum, not the other way around

Goyal RK et al. Neurogastroenterol Motil 2019;31:e13546.

< RETRY

Question 1

True or false: Gastric emptying is the transit of nutrients from the duodenum into the stomach.

A. True

B. False

Your answer is correct!

The statement is false

Gastric emptying is the transit of nutrients from the stomach into the duodenum

Goyal RK et al. Neurogastroenterol Motil 2019;31:e13546.

NEXT >

Which of the following statements is false?

A. When food is swallowed, it travels down the esophagus into the stomach

B. Stomach contractions grind food into particles

C. Chyme is a solid mass that is emptied into the duodenum

D. The chyme is emptied into the duodenum in a pulsatile manner

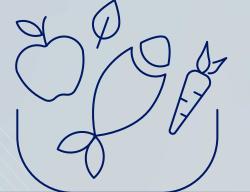
Question 2

Which of the following statements is false?

A. When food is swallowed, it travels down the esophagus into the stomach

B. Stomach contractions grind food into particles

C. Chyme is a solid mass that is emptied into the duodenum


D. The chyme is emptied into the duodenum in a pulsatile manner

Your answer is incorrect

During food intake, food that has been chewed and lubricated by saliva travels down to the esophagus into the stomach

Schneeman BO. Br J Nutr 2002;88:S159-63.

< RETRY

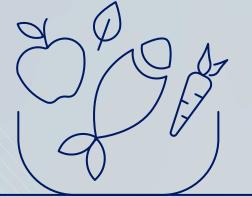
Question 2

Which of the following statements is false?

A. When food is swallowed, it travels down the esophagus into the stomach

B. Stomach contractions grind food into particles

C. Chyme is a solid mass that is emptied into the duodenum


D. The chyme is emptied into the duodenum in a pulsatile manner

Your answer is incorrect

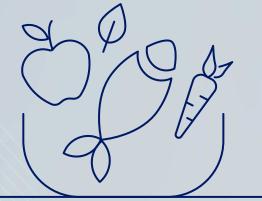

After food has been chewed, lubricated by saliva, and passed into the stomach, stomach contractions further grind food into small particles

Schneeman BO. *Br J Nutr* 2002;88:S159–63; Phillips LK et al. *Nat Rev Endocrinol* 2015;11:112–28.

< RETRY

Question 2

Which of the following statements is false?


- **A.** When food is swallowed, it travels down the esophagus into the stomach
- **B.** Stomach contractions grind food into particles
- C. Chyme is a solid mass that is emptied into the duodenum
- **D.** The chyme is emptied into the duodenum in a pulsatile manner

Your answer is correct!

This statement is false. Chyme is not a solid mass; it is a semi-liquid mixture of food particles and gastric acid

Phillips LK et al. Nat Rev Endocrinol 2015;11:112–28.

NEXT >

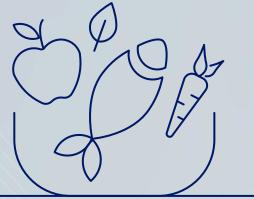
Question 2

Which of the following statements is false?

A. When food is swallowed, it travels down the esophagus into the stomach

B. Stomach contractions grind food into particles

C. Chyme is a solid mass that is emptied into the duodenum


D. The chyme is emptied into the duodenum in a pulsatile manner

Your answer is incorrect

The chyme containing small, processed food particles is emptied in a pulsatile manner from the stomach to the duodenum

Schneeman BO. *Br J Nutr* 2002;88:S159–63; Phillips LK et al. *Nat Rev Endocrinol* 2015;11:112–28.

< RETRY

Question 3

Fill in the blank: Gastric emptying is slowed

by _____.

A. Hyperglycemia

B. Hypoglycemia

C. None of the above

1)—

Question 3

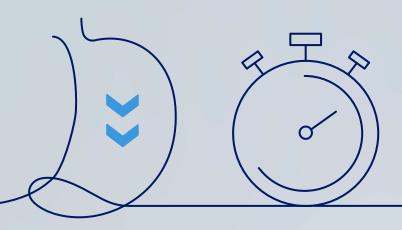
Fill in the blank: Gastric emptying is slowed

by _____.

A. Hyperglycemia

B. Hypoglycemia

C. None of the above


Your answer is correct!

Gastric emptying is slowed by hyperglycemia and accelerated by hypoglycemia

Hay DL et al. *Pharmacol Rev* 2015;67:564–600; De Fano M et al. *Diabetes Res Clin Pract* 2023;203:110828.

NEXT >

Provo pordisk

Question 3

Fill in the blank: Gastric emptying is slowed

by _____.

A. Hyperglycemia

B. Hypoglycemia

C. None of the above

Your answer is incorrect

Gastric emptying is accelerated by hypoglycemia

Hay DL et al. *Pharmacol Rev* 2015;67:564–600; De Fano M et al. *Diabetes Res Clin Pract* 2023;203:110828.

< RETRY

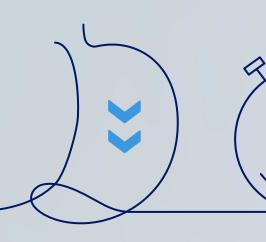
Fill in the blank: Gastric emptying is slowed

by

A. Hyperglycemia

B. Hypoglycemia

C. None of the above


Your answer is incorrect

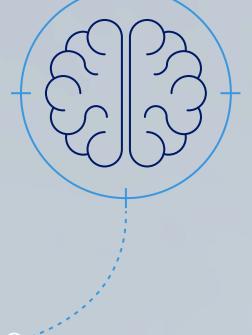
Gastric emptying is affected by either hyperglycemia or hypoglycemia

Hay DL et al. *Pharmacol Rev* 2015;67:564–600; De Fano M et al. Diabetes Res Clin Pract 2023;203:110828.

< RETRY

Which of the following statements is false?

A. Neurohormonal mechanisms regulate gastric emptying

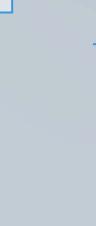

B. Circulating levels of GLP-1, cholecystokinin, and peptide YY, which stimulate gastric emptying, are suppressed postprandially

C. The vagus nerve provides bidirectional communication between the gastrointestinal tract and the brain

Question 4

Which of the following statements is false?

A. Neurohormonal mechanisms regulate gastric emptying


- **B.** Circulating levels of GLP-1, cholecystokinin, and peptide YY, which stimulate gastric emptying, are suppressed postprandially
- **C.** The vagus nerve provides bidirectional communication between the gastrointestinal tract and the brain

Your answer is incorrect

This statement is true; neurohormonal mechanisms do play a role in regulating gastric emptying

Mussa BM et al. World J Gastroenterol 2018;24:3821–33.

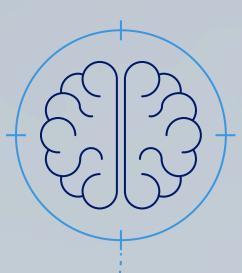
< RETRY

Question 4

Which of the following statements is false?

A. Neurohormonal mechanisms regulate gastric emptying

- B. Circulating levels of GLP-1, cholecystokinin, and peptide YY, which stimulate gastric emptying, are suppressed postprandially
- **C.** The vagus nerve provides bidirectional communication between the gastrointestinal tract and the brain


Your answer is correct!

Circulating levels of motilin and ghrelin, which stimulate gastric emptying, are suppressed postprandially; not GLP-1, cholecystokinin, and peptide YY

Phillips LK et al. *Nat Rev Endocrinol* 2015;11:112–28; Mussa BM et al. *World J Gastroenterol* 2018;24:3821–33; Wang YB et al. *Front Physiol* 2020;11:643; Cifuentes L et al. *Nutrients* 2021;13:1158.

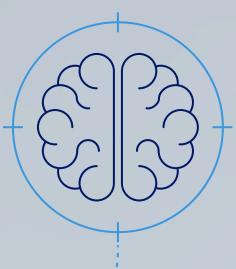
NEXT >

Question 4

Which of the following statements is false?

A. Neurohormonal mechanisms regulate gastric emptying

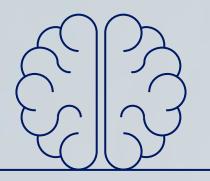
- **B.** Circulating levels of GLP-1, cholecystokinin, and peptide YY, which stimulate gastric emptying, are suppressed postprandially
- C. The vagus nerve provides bidirectional communication between the gastrointestinal tract and the brain


Your answer is incorrect

This statement is true; the vagus nerve does provide bidirectional communication between the gastrointestinal tract and the brain

Wang YB et al. Front Physiol 2020;11:643.

< RETRY


What effect does amylin have on gastric emptying?

A. It fully inhibits gastric emptying

B. It increases the rate of gastric emptying

C. It reduces the rate of gastric emptying

D. It has no effect on gastric emptying

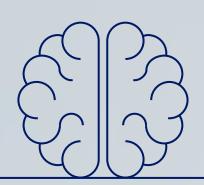
Question 5

What effect does amylin have on gastric emptying?

A. It fully inhibits gastric emptying

B. It increases the rate of gastric emptying

C. It reduces the rate of gastric emptying


D. It has no effect on gastric emptying

Your answer is incorrect

Amylin affects the rate of gastric emptying but does not fully inhibit it

Hay DL et al. *Pharmacol Rev* 2015;67:564–600; Aronoff SL et al. *Diabetes Spectr* 2004;17:183–90.

< RETRY

Question 5

What effect does amylin have on gastric emptying?

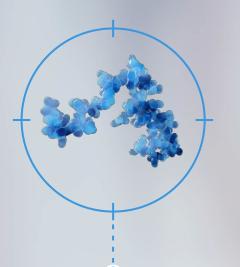
A. It fully inhibits gastric emptying

B. It increases the rate of gastric emptying

C. It reduces the rate of gastric emptying

D. It has no effect on gastric emptying

Amylin does not increase the rate of gastric emptying


Hay DL et al. *Pharmacol Rev* 2015;67:564–600; Aronoff SL et al. *Diabetes Spectr* 2004;17:183–90.

< RETRY

Question 5

What effect does amylin have on gastric emptying?

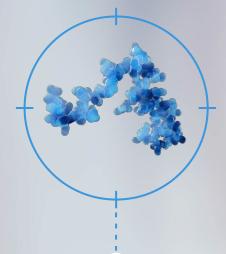
A. It fully inhibits gastric emptying

B. It increases the rate of gastric emptying

C. It reduces the rate of gastric emptying


D. It has no effect on gastric emptying

Amylin reduces the rate of gastric emptying


Hay DL et al. *Pharmacol Rev* 2015;67:564–600; Aronoff SL et al. *Diabetes Spectr* 2004;17:183–90.

NEXT >

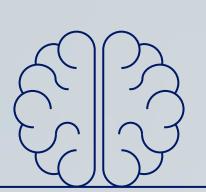
Question 5

What effect does amylin have on gastric emptying?

A. It fully inhibits gastric emptying

B. It increases the rate of gastric emptying

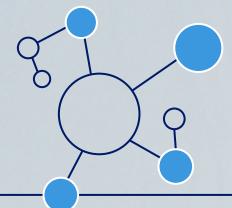
C. It reduces the rate of gastric emptying


D. It has no effect on gastric emptying


Amylin does have an effect on the rate of gastric emptying

Hay DL et al. *Pharmacol Rev* 2015;67:564–600; Aronoff SL et al. *Diabetes Spectr* 2004;17:183–90.

< RETRY



True or false: Amylin slows gastric emptying, reducing the amount of glucose available for absorption and helping to lower postprandial glucose levels.

A. True

B. False

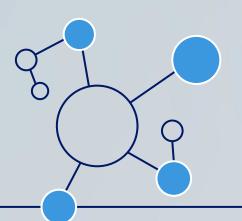
Povo pordisk

Question 6

True or false: Amylin slows gastric emptying, reducing the amount of glucose available for absorption and helping to lower postprandial glucose levels.

A. True

B. False



This statement is true

Amylin slows gastric emptying, reducing the amount of glucose available for absorption and helping to lower postprandial glucose level

Hay DL et al. *Pharmacol Rev* 2015;67:564–600; Aronoff SL et al. *Diabetes Spectr* 2004;17:183–90.

NEXT

Povo pordisk

Question 6

True or false: Amylin slows gastric emptying, reducing the amount of glucose available for absorption and helping to lower postprandial glucose levels.

A. True

B. False

This statement is true

Amylin slows gastric emptying, reducing the amount of glucose available for absorption and helping to lower postprandial glucose level

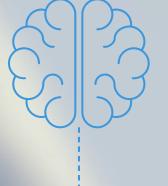
Hay DL et al. *Pharmacol Rev* 2015;67:564–600; Aronoff SL et al. *Diabetes Spectr* 2004;17:183–90.

< RETRY

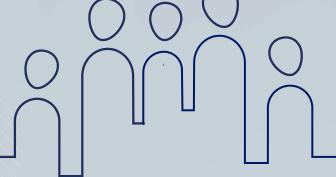
SKIP

Which of the following correctly describes the neural pathways involved in mediating amylin's effect on gastric emptying?

A. Mediated by the area postrema and vagal afferents


B. Solely mediated by vagal efferents

C. No neural pathway involvement


D. Mediated by the area postrema and vagal efferents

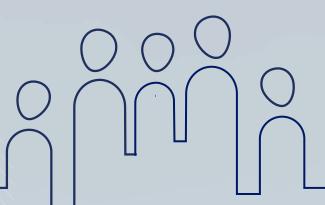
Question 7

Which of the following correctly describes the neural pathways involved in mediating amylin's effect on gastric emptying?

A. Mediated by the area postrema and vagal afferents

B. Solely mediated by vagal efferents

C. No neural pathway involvement


D. Mediated by the area postrema and vagal efferents

Your answer is incorrect

The effects of amylin on gastric emptying are not mediated by vagal afferents

Wickbom J et al. *Regul Pept* 2008;148:21–5; Hay DL et al. *Pharmacol Rev* 2015;67:564–600

< RETRY

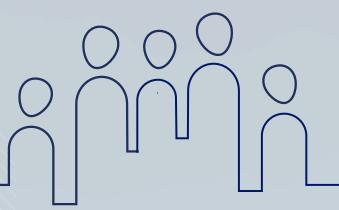
Question 7

Which of the following correctly describes the neural pathways involved in mediating amylin's effect on gastric emptying?

A. Mediated by the area postrema and vagal afferents

B. Solely mediated by vagal efferents

C. No neural pathway involvement


D. Mediated by the area postrema and vagal efferents

Vagal efferents are not the sole effector in regulating the effects of amylin on gastric emptying

Wickbom J et al. *Regul Pept* 2008;148:21–5; Hay DL et al. *Pharmacol Rev* 2015;67:564–600

< RETRY

Povo nordisk®

Question 7

Which of the following correctly describes the neural pathways involved in mediating amylin's effect on gastric emptying?

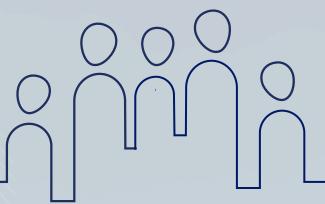
A. Mediated by the area postrema and vagal afferents

B. Solely mediated by vagal efferents

C. No neural pathway involvement

D. Mediated by the area postrema and vagal efferents




Neural pathways are involved in regulating the effects of amylin on gastric emptying

Wickbom J et al. *Regul Pept* 2008;148:21–5; Hay DL et al. *Pharmacol Rev* 2015;67:564–600

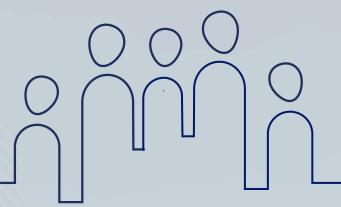
< RETRY

Question 7

Which of the following correctly describes the neural pathways involved in mediating amylin's effect on gastric emptying?

- **A.** Mediated by the area postrema and vagal afferents
- **B.** Solely mediated by vagal efferents
- **C.** No neural pathway involvement
- D. Mediated by the area postrema and vagal efferents




The slowing of gastric emptying by amylin is thought to involve the area postrema and vagal efferents

Wickbom J et al. *Regul Pept* 2008;148:21–5; Hay DL et al. *Pharmacol Rev* 2015;67:564–600

NEXT >

You have completed the quiz!

Module 6: Effects on gastric emptying

