

Atherosclerotic cardiovascular disease (ASCVD)

BURDEN OF ASCVD

CVD is the leading cause of death in the US, 2020

BURDEN OF ASCVD

Higher annual total healthcare costs* in the US for people with T1D/T2D and with CVD

People with T2D (N=12,278)

The total mean direct medical care costs for patients with established CVD were \$18,953 per patient per year¹

People with T1D (N=12,687)

Data represents per patient per year healthcare costs at 12 months of follow-up (Jan-Dec 2016)²

EPIDEMIOLOGY OF ASCVD

The proportion of **AMI hospitalizations attributable** to **young patients (35-54 years)** increased from 1995 to 2014² in the ARIC study

EPIDEMIOLOGY OF ASCVD

Racial and ethnic disparities in prevalence and mortality of heart disease, 1999-2017 (≥18 years)

PATHOGENESIS OF ATHEROSCLEROSIS

Atherosclerotic plaque lifecycle 1-5

ASCVD, atherosclerotic cardiovascular disease; FH, familial hypercholesterolemia

1. Herrington W et al. Circ Res 2016;118:535–546; 2. Agrawal S et al. Am J Cardiol. 2017;119(10):1532-1541; 3. Hudspeth B. Am J Manag Care. 2018;24(13 Suppl):S268-S272; 3. Handelsman Y et al. Endocr Pract. 2020;26(No.10); 4. Grundy SM et al. Journal of the American College of Cardiology. 2019;73(24). DOI: 10.1016/j.jacc.2018.11.003; 5. Nauck MA et al 2020. Molecular metabolism. https://doi.org/10.1016/j.molmet.2020.101102

Acute coronary event

PATHOGENESIS OF ATHEROSCLEROSIS

The concept of residual inflammatory risk

- Cardiovascular events occur despite control of conventional risk factors. This is recognised as 'residual cardiovascular risk'¹
- **Systemic inflammation**, driven by the NLRP3 inflammasome pathway, contributes to the risk of cardiovascular events²
- The most widely used marker of this pathway is hsCRP²

Residual inflammatory risk is classified as levels of hsCRP ≥2 mg/L³

GUIDELINE-BASED TREATMENT APPROACHES FOR CVD

Managing risk factors to reduce ASCVD risk

Potential mechanisms of CV risk reduction by GLP-1RAs

^{1.} Aroda V, et al. Diabetes Care 2019;42:1724-32; 2. Rodbard HW, et al. Diabetes Care. 2019;42(12):2272-2281; 3. Marso SP et al. N Engl J Med. 2016;375(4):311-22; 4. Marso SP et al. N Engl J Med. 2016;375:1834–1844; 5. Hussain M et al. N Engl J Med. 2019;381(9):841-851.

Recent CVOTs in diabetes

ANTI-INFLAMMATORY THERAPY FOR CVD

T-req

T-lymphocytes

Mechanism of action of anti-inflammatory drugs

Please find abbreviations in the speaker notes; **Bolded text** indicates cytokines IL-10 and TGF-β that reduce the inflammatory state of plaque macrophages and be particularly important in regressing atherosclerosis plaque; *Due to hypoxia, oxidized LDL, cholesterol crystals, atheroprone flow, somatic mutations; neutrophil extracellular traps

ANTI-INFLAMMATORY THERAPY FOR CVD

Factors contributing to the residual CVD risk

Patients with or at high risk for ASCVD

	Despite contemporary evidence -based therapies*, residual risk of ASCVD events persists					
	Residual inflammatory risk	Residual cholesterol risk	Residual thrombotic risk	Residual triglyceride risk	Residual Lp(a) risk	Residual diabetes risk
Critical biomarker	hsCRP ≥ 2 mg/L	LDL-C ≥ 100 mg/dL	No simple biomarker	TG ≥ 150 mg/dL	Lp(a) ≥ 50 mg/dL	HbA _{1c} fasting glucose
Potential intervention	Targeted inflammation reduction	Targeted LDL/Apo B reduction	Targeted antithrombotic reduction	Targeted triglyceride reduction	Targeted Lp(a) reduction	SGLT2is GLP-1 RAs
Randomized trial evidence	CANTOS COLCOT LoDoCo2 OASIS-9	IMPROVE-IT FOURIER SPIRE ODYSSEY	PEGASUS COMPASS THEMIS	REDUCE-IT PROMINENT	HORIZON	EMPA-REG CANVAS DECLARE CREDENCE LEADER SUSTAIN-6 REWIND

^{*}In addition to standard evidence-based therapies, more aggressive blood pressure targets may be considered

Apo B, apolipoprotein B; ASCVD, atherosclerotic cardiovascular disease; CVD, cardiovascular disease; GLP-1 RA, glucagon-like peptide-1 receptor agonist; HbA1c, glycosylated haemoglobin; hsCRP, high-sensitivity Creactive protein; LDL-C, low-density lipoprotein C; Lp(a), lipoprotein (a); SGLT2i, sodium-glucose cotransporter 2 inhibitor; TG, triglyceride

Lawler PR et al. Eur Heart J. 2021;42(1):113-131.

