

Congenital Hemophilia

Disease background

October 2024

Table of contents

- Click on one of the titles below to navigate to that section
- Select the home button at any time to return to this slide

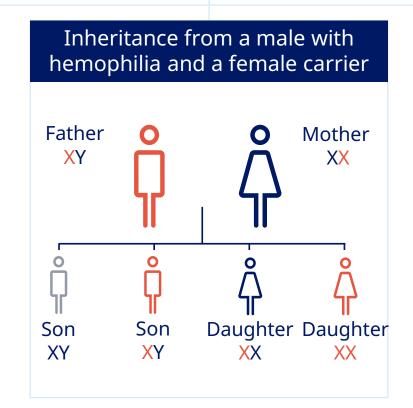
Overview of hemophilia

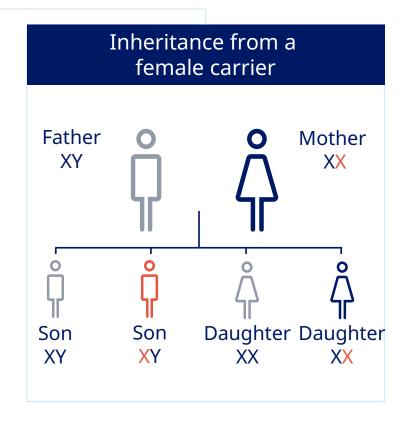
Hemophilia is an inherited bleeding disorder, caused by a deficiency in the production of clotting proteins (clotting factors)^{1,2}

Hemophilia A	Hemophilia B
• FVIII deficiency ¹	• FIX deficiency ¹
Classic hemophilia ²	Also known as Christmas disease ²
 Most common form Affects approximately 80% of hemophilia population^{1,3} 	 Less common form Affects approximately 20% of hemophilia population^{1,3}

Severity of disease can be predicted by the level of residual FVIII or FIX activity^{1,2}

WFH estimates that there are ~271,359 cases of hemophilia globally³


WFH and CDC estimates that there are 18,580–)



Inheritance pattern of hemophilia

Hemophilia A and B are both X-linked recessive traits with the gene mutation appearing on the X chromosome:1

Inheritance from a male with hemophilia **Father** Mother XY XX Son Daughter Daughter Son XY XY XX XX

Diagnosis and clinical classification

Screening for hemophilia is based on:

- Family history¹
 - Known carrier mother (30% of cases are spontaneous)
- Laboratory features^{1,2} (prolonged aPTT; normal PT; low levels of FVIII or FIX)
- Preoperative screening¹

Severe hemophilia	Moderate hemophilia	Mild hemophilia
A: 44.4%³ B: 25.2%³	A: 16.4%³ B: 35.4%³	A: 37.4%³ B: 37.7%³
<1% factor level ²	1–5% factor level ²	>5% to <40% factor level ²
Spontaneous bleeding into joints or muscles ²	Occasional spontaneous bleeding; prolonged bleeding with minor trauma or surgery ²	Rare spontaneous bleeding; severe bleeding with major trauma or surgery ²
Usually	May	Rarely
have joint problems ⁴	have joint problems ⁴	have joint problems ⁴

aPTT, activated partial thromboplastin time; FIX, factor IX; FVIII, factor VIII; PT, prothrombin time.

^{1.} Escobar MA, Key NS. Hemophilia A and Hemophilia B. In: Kaushansky K et al. eds. Williams Hematology. New York, NY: McGraw Hill; 2016; 2. Srivastava A et al. Haemophilia 2020;26(Suppl 6):1–158; 3. Centers for Disease and Control and Prevention. Factor VIII and Factor IX. Community counts. Available at: https://www.cdc.gov/hemophilia-community-counts/php/htc-population-profile/2023-sept-factor-viii-and-factor-ix.html. Accessed July 2024; 4. World Federation of Hemophilia. Protocols for treatment of hemophilia and von Willebrand Disease (3rd Edition) 2008. Available at: https://www1.wfh.org/publication/files/pdf-1137.pdf. Accessed August 2024.

Clinical presentation

- Prolonged bleeding^{1,2}
- Severe bleeding¹
 - Large joints: ankle, elbow, knee
 - Soft tissues: muscle, mucocutaneous
- Life-threatening bleeding¹
 - Intracranial hemorrhage (usually traumatic in origin)
 - Retroperitoneal bleeding
 - Episodic bleeding in the gastrointestinal tract
- Postoperative bleeding¹

Repeated bleeding leads to arthropathy, even in young adults^{3,4}

Clinical management: current therapies

Treatment priorities include prevention of bleeding and joint damage and prompt management of bleeding episodes¹

Replacement therapy^{2,3}

Hemophilia A

- Standard half-life
- Extended half-life
- Ultra-long half-life³

Hemophilia B

- · Standard half-life
- Extended half-life

Challenges remain:

- Frequent IV administration²
- Lack of adherence⁴
- Development of alloantibodies²

Non-factor therapies^{1,2,5-9}

Hemophilia A with and without inhibitors

• FVIIIa mimetics^{1,7}

Hemophilia A and B without inhibitors

Anti-TFPI mAb⁸

For FVIIIa mimetics:

- Subcutaneous dosing weekly, biweekly, or monthly^{2,5}
- Not intended to treat acute bleeding episodes¹
- No development of FVIII inhibitors observed^{2,6}
- Not seen to be inhibited by existing FVIII inhibitors^{7,9}

Adjunctive therapies¹

Hemophilia A

- DDAVP
- Antifibrinolytics

Hemophilia B

Antifibrinolytics

Guidelines suggest a comprehensive care model involving a multidisciplinary approach is adopted, which prioritizes psychosocial wellbeing and quality of life as well as the treatment of acute bleeding¹

DDAVP, desmopressin acetate; FVIIIa, activated factor FVIII; FVIII, factor VIII; IV, intravenous; mAb, monoclonal antibody; TFPI, tissue factor pathway inhibitor.

1. Srivastava A et al. Haemophilia 2020;26(Suppl 6):1−158; 2. Weyand AC, Pipe SW. Blood 2019;133:389−98; 3. Hermans C, Pierce GF. J Thromb Haemost 2024;22:1844−6; Thornburg CD et al. Patient Prefer Adherence
2017;11:1677−86; 5. Nogami K, Shima M. Blood 2019;133:399−406; 6. Mahlangu J et al. N Engl J Med 2018;379:811−22; 7. Ellsworth P, Ma A. Hematology Am Soc Hematol Educ Program 2021;2021:219−25; 8. Business Wire. U.S.
FDA Approves Pfizer's HYMPAVZI™ (marstacimab-hncg) for the Treatment of Adults and Adolescents with Hemophilia A or B Without Inhibitors. Accessed October 11, 2024; 9. Young G et al. Blood 2019;134:2127−38.

Novel therapies

Anti-TFPI¹⁻³

MOA: Restores thrombin generation by blocking the inhibitory effect of TFPI on the initiation of coagulation

Bispecific antibodies with FVIIIa mimetic properties¹⁻³

MOA: Bridges FIXa and FX to restore the function of missing activated FVIII

siRNA knockdown of antithrombin^{2,5}

RNAi therapeutic targeting antithrombin to rebalance the coagulation system and promote hemostasis^{2,5}. Under investigation for use in the US (phase 3).

MOA: Inhibits antithrombin, an anticoagulant that inactivates FXa and thrombin⁵

Gene therapy^{1,6,7}

AAV gene therapy treatments recently approved for hemophilia A and B

MOA: Replacement of a defective FVIII or FIX gene sequence with the corrected version

Anti-APC protease inhibitors^{8,9}

SerpinPC: serine protease inhibitor (SERPIN) engineered to inhibit APC. Under investigation for use in the US (phase 1/2)

MOA: Promotes clotting by prolonging the lifespan of the prothrombinase complex

AAV, adeno-associated virus; APC, activated protein C; FIX, factor IX; FIXa, activated factor VIII; FVIIIa, activated factor VIII; FX, factor X; FXa, activated factor X; mAb, monoclonal antibody; MOA, mechanism of action; RNAi, ribonucleic acid interference; siRNA, small interfering ribonucleic acid; TFPI, tissue factor pathway inhibitor.

1. Gogia P et al. Expert Rev Hematol 2023;16:417–33; 2. Ellsworth P, Ma A. Hematology Am Soc Hematol Educ Program 2021;2021:219–25; 3. Olasupo OO et al. Cochrane Database Syst Rev 2024;2:CD014544; 4. Business Wire. U.S. FDA Approves Pfizer's HYMPAVZ™ (marstacimab-hncq) for the Treatment of Adults and Adolescents with Hemophilia A or B Without Inhibitors. Accessed October 11, 2024; 5. Young G et al. Res Pract Thromb Haemost 2023;7;:100179; 6. Ay C et al. Haemophilia 2024;30:5–15; 7. Kaczmarek R et al. Haemophilia 2024:30(Suppl 3):12–20; 8. Baglin T et al. Blood 2023;142(Suppl 1):2619; 9. Polderdijk SGI et al. Blood 2017;129:105–13.

Summary

Hemophilia is a rare inherited condition¹ that can be challenging to manage²

Five decades of advances have brought the widespread availability of effective hemophilia treatments^{3,4}

Several unmet needs remain:

- Bleeding events still occur⁵
- Progression of joint disease^{2,6}
- Poor adherence to prophylaxis⁷
- Inhibitor development⁸

Further technological advances may offer more effective and less burdensome hemophilia treatments, addressing the remaining unmet needs and enabling patients to achieve a hemophilia-free mindset^{9,10}