Individualization of hemophilia treatment ### Hemophilia care should be individualized to choose the "optimal" treatment for PwH **Evolution of hemophilia care** has resulted in efficacious treatments designed to reduce bleeding and improve functional status and QoL¹⁻³ Decision-making can be a complex process of selecting the most appropriate **treatment option** and dosing strategy for each patient¹ As clinical characteristics (e.g., bleeding phenotype), lifestyle, and environment of PwH differ, **individualization of care is required** to ensure patient-centered care that targets optimal outcomes and preferences of each patient⁴ Cryoprecipitate, fresh frozen plasma Antifibrinolytic agents, DDAVP CFCs (plasma-derived, recombinant, SHL, EHL) the by for Non-factor replacement Gene therapy Investigational therapies #### Treatment individualization involves tailoring product type^{1,2} and dosing regimen¹⁻⁴ **1. Product type**—there are a variety of features to consider when selecting a hemophilia product: Route of administration and MoA^{4,5} **Product origin**⁶ (plasma-derived vs recombinant) **Dosing** frequency⁶ Hemostatic efficacy/safety profile4 Vials per infusion Convenience of administration^{5,6} **Storage** temperature⁶ Access⁷ - · Diluent volume, - Reconstitution device **2. Dosing regimen**—tailoring dose and frequency⁴ as per indication to help prevent bleeds MoA, mechanism of action ^{1.} Mancuso ME et al. Haemophilia 2021;27:889-96; 2. Coppola A et al. J Clin Med 2022;11:801; 3. Collins PW et al. Haemophilia 2012;18(Suppl 4):131-5; 4. Srivastava A et al. Haemophilia 2020;26(Suppl 6):1-158; 5. Furlan R et al. Patient Prefer Adherence 2015;9:1687–94; 6. Tischer B et al. Patient Prefer Adherence 2018;12:431–41; 7. Okaygoun D et al. J Biomed Sci 2021;28:64 ### Comprehensive care and individualized prophylaxis target improved patient outcomes Hemophilia guidelines recommend early initiation of regular, long-term prophylaxis and comprehensive care with input from an MDT of specialists¹ Protection from bleeds^{2,3} Factor trough levels and hemostatic efficacy^{3,4} Patient satisfaction with treatment^{3,5} **Adherence** to therapy³ **Clinical outcomes**, including joint health⁶ and pain⁷ Quality of life,^{2,5} including physical activity⁴ ^{1.} Mancuso ME et al. Haemophilia 2021;27:889–96; 2. Coppola A et al. J Clin Med. 2022;11:801; 3. Hermans C et al. Blood Rev 2022;52:100890; 4. Su J et al. Haemophilia 2020;26:e291–9; ^{5.} Poon MC et al. Thromb J 2016;14(Suppl 1):32; 6. Pasi J et al. Ther Adv Hematol 2022;13:20406207221079482 ### Treatment individualization can result in improved protection from bleeds • Reductions in ABR observed following transition to individualized prophylaxis^{1–3} PK-guided prophylaxis targeting elevated trough levels can increase proportion of patients with zero bleeds^{2,3} #### ABR outcomes with standard and individualized prophylaxis ABR, annualized bleeding rate; HA, hemophilia A; PK, pharmacokinetic; PPX, prophylaxis; QoL, quality of life *Individualized prophylaxis established based on findings from motivational interviewing to discern patient values/experiences. †Comparison from the 12-month pre-study period to the 12-month study period. †PK-guided rurioctocog alfa pegol prophylaxis targeting 1–3% trough levels. *Comparison from 12-month pre-study period to second 6-month study period. PK-guided rurioctocog alfa pegol prophylaxis targeting 8–12% trough levels. **PK-guided, trough-level escalating individualized prophylaxis; comparison from 6-month observation period (standard prophylaxis) to 24–30-month period on individualized prophylaxis ^{1.} Sun LH et al. Haemophilia 2017;23:877–83; 2. Klamroth R et al. Blood 2021;137:1818–27; 3. Huang K et al. Haemophilia 2022;28:e209–18; 4. Pasi J et al. Ther Adv Hematol 2022;13:20406207221079482. ## Individualization of care is a dynamic process of shared decision-making between patients and their MDT Shared decision-making: decisions around hemophilia treatment should be a collaborative process between the MDT and patient/caregiver^{1,2} SDM should consider the **expertise and experience of PwH**, whose aspirations and concerns may differ to HCP's¹ SDM requires a dynamic approach that includes discussion of goals, priorities and preferences of PwH,³ while also managing patient expectations SDM should consider patient-centric treatment goals (e.g., QoL, physical activity) in parallel with desired clinical outcomes⁴ SDM requires time investment,⁵ and is a continual process whereby decisions should be revisited³ at least annually as therapies as the environment and preferences of PwH change SDM may help to increase patient understanding, self-management, and ability to practice prophylaxis⁶ ## Shared decision-making for treatment individualization requires education and patient empowerment Patient education and engagement is essential to inform treatment choice;¹ PwH should be empowered to understand their role in SDM PwH should be educated on features of treatment e.g., how they work, effects/limitations, expected outcomes, administering/monitoring^{1,2} Patient education may help to improve adherence and compliance to prescribed treatments¹ HCPs require education and use of skilled communication for effective SDM in an evolving and complex treatment landscape² Patient education can occur via dialogue and use of visual aids/interactive tools to simplify concepts and considerations around treatment² ### There are multiple variables to consider for treatment individualization (1/2) #### Clinical characteristics Venous access¹ Joint damage and MSK health^{2,3} Blood group⁴ Pain¹ Inhibitors¹ Comorbidities¹ (e.g., CV disease, thrombotic risk) Current/past/ concomitant treatment¹ Age¹ #### Bleeding phenotype^{1,2} - Treatment and dose may be reviewed and adjusted by HCPs according to bleeding pattern: - Bleed history - Severity of bleeds - Frequency of bleeds - Location of bleeds - Timing with respect to last infusion #### Pharmacokinetics¹ - Where able, treatment and dose may be reviewed and adjusted by HCPs to target high trough levels for effective prophylaxis^{2,5} - Half-life, AUC, incremental recovery and peak factor levels may also be important for determining optimal coverage⁵ - Tools available for Bayesian PK-guided dosing (e.g., WAPPS, MyPKFiT)^{5,6} - Challenges for routine PK assessment: burden of classical PK sampling,⁵ access to monitoring tools,⁷ monitoring novel therapies⁸ AUC, area under the curve; CV, cardiovascular; HCP, healthcare professional; MSK, musculoskeletal; PK, pharmacokinetic; WAPPS, Web-based Application for the Population Pharmacokinetic Service. 1. Hermans C et al. Blood Rev 2022;52:100890; 2. Srivastava A et al. Haemophilia 2020;26(Suppl 6):1–158; 3. Seuser A et al. Blood Coagul Fibrinolysis 2018;29:509–20; 4. Singkham N et al. Haemophilia 2022;28:230–8; 5. Hermans C et al. Ther Adv Hematol 2020;11:2040620720966888; 6. Mingot-Castellano ME et al. Haemophilia 2018;24:e338–43; 7. Delavenne X and Dargaud Y. Thromb Res 2020;192:52–60; 8. Lenting PJ. Blood Adv 2020;4:2111–8 ### There are multiple variables to consider for treatment individualization (2/2) #### Patient preferences and lifestyle Physical activity¹ Preferences² Perceptions of treatment¹ Lifestyle¹ Quality of life¹ Adherence¹ Psychological ecosystem: motivation, understanding, ambitions¹ #### Local healthcare environment Healthcare resources^{1,2} Family support¹ Environment for switching¹ Access/coverage¹